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Abstract 

 
 The routing of unmanned ground vehicles for the surveillance and protection of 

key installations is modeled as a new variant of the Covering Tour Problem (CTP). The 

CTP structure provides both the routing and target sensing components of the installation 

protection problem. Our variant is called the in-transit Vigilant Covering Tour Problem 

(VCTP) and considers not only the vertex cover but also the additional edge coverage 

capability of the unmanned ground vehicle while sensing in-transit between vertices. The 

VCTP is formulated as a Traveling Salesman Problem (TSP) with a dual set covering 

structure involving vertices and edges. An empirical study compares the performance of 

the VCTP against the CTP on test problems modified from standard benchmark TSP 

problems to apply to the VCTP. The VCTP performed generally better with shorter tour 

lengths but at higher computational cost. 
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THE IN-TRANSIT VIGILANT COVERING TOUR PROBLEM FOR ROUTING 

UNMANNED GROUND VEHICLES 

 

I. Introduction 

 

 1.1 Overview   

Operations research techniques are frequently applied to the entire spectrum of 

military scenarios and are used to identify optimal usage of scarce resources. One of the 

key techniques is the application of combinatorial optimization models as decision 

support models. These models are useful for the analysis of complex military scenarios 

and provide military commanders with a quantitative basis for the evaluation of decision 

options. Some of these scenarios include aircraft scheduling, logistics delivery, routing 

and target coverage.  

Within the Air Force Institute of Technology (AFIT), the Maximization of 

Observability in Navigation for Autonomous Robotic Control (MONARC) project has an 

overarching goal to develop an autonomous robotic, network-enabled, Search, Track, ID, 

Geo-locate, and Destroy (Kill Chain) capability which would be effective in any 

environment, at any time. One of the specific mission scenarios for MONARC is mission 

planning for routing Unmanned Ground Vehicles (UGVs) for base security. 

Combinatorial optimization approaches on related problems such as routing 

Unmanned Aerial Vehicles (UAVs) have been proposed. Ryan et al. [1998] discussed a 

multiple Traveling Salesman Problem with time windows (mTSPTW) formulation with 

the objective of maximizing target coverage. A reactive tabu search heuristic was applied 
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to solve routing problems for UAVs reconnaissance. The Vehicle Routing Problem with 

time window (VRPTW) approach, with the application of Java-encoded metaheuristic, 

was used [O’Rourke et al., 2001] for the dynamic routing of UAVs. Harder et al. [2004] 

added new UAV considerations and tabu search techniques, and proposed a layered 

architecture to support pre-planning and real-time tasking of UAVs.  

The MONARC security defense task requires the consolidation of intelligence, 

management of system readiness, centralized operational planning and dissemination of 

Command and Control (C2) information for the provision of a surveillance approach for 

use by the team of UGVs. This surveillance approach requires the UGVs to perform their 

surveillance functions by visiting multiple locations, while covering some locations, in 

the shortest tour route possible. A new variant of the multiple-vehicle Covering Tour 

Problem (mCTP) was developed and evaluated to model this surveillance approach. The 

mCTP consists of determining a set of total minimum length vehicle routes on a subset of 

V, subject to side constraints, such that every vertex of W is within a pre-determined 

distance from a route [Hachicha et al., 2000]. 

 

1.2 Research Focus   

This research presents the development of a new variant of the Covering Tour 

Problem (CTP), which considers target coverage by both vertices and edges, to model a 

generic base security defense scenario. The CTP consists of determining a minimum 

length Hamiltonian cycle on a subset of V such that every vertex of W is within a pre-

determined distance from the cycle [Gendreau et al., 1997]. As the UGVs are able to 

sense while traveling, the CTP model, which considers coverage only at vertices, is 
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artificially limiting. An empirical study is designed and conducted to examine the 

benefits and costs of the new variant of the CTP. 

The new variant CTP model is formulated as a TSP with dual set covering 

structure involving vertices and edges. It is coded in LINGO 11.0 and tested on various 

sets of randomly generated problems in comparison with the CTP model. The optimal 

tour length, type of coverage and computational effort are recorded and compared. 

 

1.3 Thesis Organization 

Chapter 2 of this thesis provides background of the base security problem. The 

CTP model is described in detail along with other applications of the model. The 

relationship of other combinatorial optimization problems with the CTP completes the 

chapter. Chapter 3 is written as a journal article and defines the new variant of the CTP 

model as the in-transit Vigilant CTP (VCTP). The mathematical formulation, 

methodology for empirical study and results concludes the chapter. Chapter 4 contains a 

discussion of the conclusions and recommended future research areas. 
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II. Related Work 

The Covering Tour Problem (CTP) is a combinatorial optimization problem that 

can be applied to many military scenarios. Such scenarios include the placement of 

multiple UAVs for perimeter surveillance [Kinney Jr et al., 2005] in which the area of 

interest is monitored in a decentralized but optimized fashion. For this thesis, we will 

focus on the application of the CTP on the security defense task of critical facilities. 

The Maximization of Observability in Navigation for Autonomous Robotic 

Control (MONARC) project within AFIT has an overarching goal of the development of 

an autonomous robotic, network-enabled, Search, Track, ID, Geo-locate, and Destroy 

(Kill Chain) capability which would be effective in any environment, at any time. This 

long-term goal is dependent on the development of novel ways to automate, shorten, and 

enhance kill-chain effectiveness through higher levels of guidance, navigation, control, 

and estimation integration, from the sub-system/sensor level all the way up to the 

operational level using autonomous robotic vehicles. 

One of the research areas in the MONARC project is mission planning for base 

security. This task requires collecting sensory date sampling the environment at different 

locations, exchange the information with other nodes, and collaboratively accomplish the 

required mission. The coordination and control of multiple mobile sensors provides an 

opportunity to improve the quality and robustness of the collected data, as compared to a 

single sensor and/or static system. 

Specifically, the security defense task of critical facilities can be formulated as a 

CTP for multiple vehicles. With the amalgamation of various sensory inputs into a 
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Recognized Ground Situation Picture (RGSP), the locations of all security entities and 

adversaries are known at a specific point in time. As such, it is possible to develop a CTP 

model, in which multiple security entities (vehicles) must visit multiple adversaries 

(locations), while covering certain locations, in the shortest distance possible travelled by 

all entities. 

 

2.1 Background of base security problem 

One of the defined MONARC scenarios relates to the protection of Key 

Installations (KIN) from potential adversarial intrusions. A team of Unmanned Ground 

Vehicles (UGVs) are tasked to protect a critical installation. Their surveillance 

capabilities are augmented by static sensors that are located throughout the installation. 

Therefore, a RGSP is available to a mission planner to assist in finding UGV tour routes. 

The UGVs should only patrol routes that cover all the required checkpoints and the 

overall route length should be minimized. All UGVs originate from a base station, the 

depot. There are certain checkpoints that the UGVs must visit (these checkpoints are 

usually critical ones requiring compulsory surveillance) and there are also checkpoints 

that may be visited. There are also potential spots where the adversary may appear and 

these spots must be covered by visiting a checkpoint that is within a fixed proximity 

distance. Once, each checkpoint is visited by a UGV, all UGVs return to the base station.   

The critical installation protected by the UGV team is modeled as a complete 

graph with a vertex set as the various checkpoints to visit. The graph is undirected; UGVs 

travel either direction. Within the vertex set, there may be predefined critical checkpoints 

that must be visited. The potential adversarial spots (targets) are modeled using a second 
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vertex set, all of which must be covered by a UGV tour. This second vertex set is 

excluded from the tour route construction to prevent any UGV from traveling directly 

into an adversary. 

Coverage of targets by a visited checkpoint is defined as the circular area of a 

fixed radius, where any vertex within the area is covered by that checkpoint. The circular 

area of coverage is analogous to the effective range of a weapon or sensor system on-

board the UGVs. Each UGV is modeled as an individual vehicle travelling on different 

routes of minimum length tours. During the route, the UGV covers targets and all targets 

must be covered for a feasible solution to the overall problem.  

There are some key assumptions and limitations made in modeling the base 

defense security scenario as a multiple CTP: 

a. All UGVs are similar and have equal capabilities of movement and coverage. 

b. UGVs can visit as many vertices and as long a tour length as required. 

c. UGVs travel in straight lines between vertices. 

d. Potential adversarial spots are known at a specific point of time or are pre-defined 

and are thus part of the problem structure. 

 

2.2 Other applications of CTP 

One of the main applications of the CTP lies in the health care industry, especially 

for the deployment of mobile health care units in developing countries [Hodgson et al., 

1998]. The mobile health care units have access to a limited number of villages due to 

factors such as infrastructure restrictions, unit capacity and cost. Therefore, it is not 

feasible to travel to all villages. Instead, a tour route is planned so that the unvisited 
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villages are within reasonable walking distance to the visited villages for the needy to 

receive health care. By modeling this as a CTP, the vehicle routes of the health care units 

are efficiently planned to reduce the amount of travel required, yet provide sufficient 

medical coverage. A real-life problem associated with the planning of mobile health care 

units in the Suhum distinct, Ghana, was studied [Oppong et al., 1994] and solved 

[Hachicha et al., 2000] as a CTP. 

Another important application of the CTP is the placement of post box locations 

to reduce the traveling distance of the postal delivery service while ensuring maximum 

coverage [Labbé et al., 1986]. Good locations of post boxes to cover a region of users 

and an optimal route for collection are constructed. Alternatively, this can also be applied 

to the management of centralized post offices, i.e. post offices are centralized at towns of 

higher populations and the smaller towns nearby are covered by the centralized post 

offices. 

The CTP model can be applied to the transportation industry such as the design of 

bi-level, hierarchical transportation networks [Current et al., 1994]. For an overnight mail 

delivery service provider such as DHL or Fedex, the optimal tour route represents the 

route taken by the primary vehicle (aircraft) to the distribution centers and the coverage 

radius is represented by the maximum distance travelled by the delivery trucks from the 

distribution centers to its customers. This ensures that the distribution cost to every region 

is minimized while providing the required delivery service to customers. Drilling into the 

problem further, the CTP does not consider the efficient distribution by the delivery 

trucks. However, this could be solved by considering each distribution center as a TSP. 



 

8 

The design of computer networks can also be modeled as a CTP with the 

objective of minimizing the connection cost of numerous computers to the nearest 

servers. The servers are then modeled as the vertices with the computers as the vertices to 

be covered. 

 

2.3 Explanation of CTP 

The CTP is classified as a NP-hard problem [Garey et al., 1979] as it reduces to a 

Traveling Salesman Problem (TSP) when the coverage distance is zero and all the 

potential adversarial spots must be visited rather than covered.  

The multi-vehicle variant of the CTP (mCTP) is defined [Hachicha et al., 2000] 

as a complete undirected graph 𝐺 = (𝑉 ∪𝑊,𝐸) where 𝑉 ∪𝑊 is the vertex set, and 

𝐸 = {(𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ∪𝑊, 𝑖 < 𝑗} is the edge set. Vertex 𝑣0 is a depot (base station), V 

is the set of vertices that can be visited, 𝑇 ⊆ 𝑉 is the set of vertices that must be visited 

(𝑣0 ∈ 𝑇), and W, the set of vertices (or targets) that must be covered. A distance matrix 

𝐶 = �𝑐𝑖𝑗�, which satisfies the triangle inequality, indicates the edge length between all 

vertices (𝑉 ∪𝑊) is defined for E. A final parameter is c, the pre-defined maximum size 

of the cover. 

The solution of the mCTP consists in defining a set of m vehicle routes of 

minimum total length satisfying the following constraints: 

1. Each vehicle route starts and ends at the base station, v0, subject to a maximum of 

m vehicle routes. 

2. Each vertex of V belongs to at most one route and each vertex of T belongs to 

exactly one route. 
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3. Each vertex of W must be covered by a route, i.e. it lies within a distance c of a 

vertex V which belongs to a route. Additionally, the depot should not cover all vertices in 

W. 

The mCTP can be formulated as a linear integer problem. For 𝑣ℎ ∈ 𝑉, let yhk be a 

binary variable equal to 1 if and only if vertex 𝑣ℎ is visited by vehicle k and belongs to 

the tour; otherwise, yhk is zero.  If 𝑣ℎ ∈ 𝑇, then 𝑦ℎ𝑘 is equal to 1. 

For 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉 and 𝑖 < 𝑗, let 𝑥𝑖𝑗𝑘 be a binary variable equal to 1 if and only if edge 

(𝑣𝑖, 𝑣𝑗) belongs to the tour and is travelled by vehicle k. However, for the special case of i 

= 0 (for route originating from depot), then xijk can take values of 0, 1 and 2 (for the 

returning trip). Otherwise, xijk is zero. 

For every 𝑣𝑙 ∈ 𝑊, we define a covering set 𝑆𝑙 = {𝑣ℎ ∈ 𝑉 | 𝑐ℎ𝑙 ≤ 𝑐} which detects 

all vertices of the set V that is able to cover the vertex 𝑣𝑙 ∈ 𝑊. Thus, there should be 

vertices 𝑣ℎ ∈ 𝑉 which lie at a distance 𝑐ℎ𝑙 from 𝑣𝑙 ∈ 𝑊, where 𝑐ℎ𝑙 is less than or equal to 

the predetermined covering distance c. 

The formulation of the mCTP, which minimizes the tour length, is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 �� � 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=0

𝑚

𝑘=1

 (1) 

Subject to 

� � 𝑦ℎ𝑘 ≥ 1   (∀ 𝑣𝑙 ∈ 𝑊)
𝑣ℎ∈𝑆𝑙

𝑚

𝑘=1

 (2) 

�𝑦ℎ𝑘 ≤ 1   
𝑚

𝑘=1

(∀ 𝑣ℎ ∈ 𝑉 ∖ {𝑣0}) (3) 
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�𝑥𝑖ℎ𝑘 
ℎ−1

𝑖=0

+ � 𝑥ℎ𝑗𝑘 = 2𝑦ℎ𝑘   (∀ 𝑣ℎ ∈ 𝑉 ∖ {𝑣0},𝑘 = 1, 2 … ,𝑚) 
𝑛

𝑗=ℎ+1

 (4) 

� � 𝑥𝑖𝑗𝑘
𝑣𝑖∈𝑆,𝑣𝑗∈𝑉∖𝑆

≥ 2�𝑦ℎ𝑘

𝑚

𝑘=1

   
𝑚

𝑘=1

(𝑆 ⊂ 𝑉,𝑇 ∖ 𝑆 ≠ 0, 𝑣ℎ ∈ 𝑆) (5) 

�𝑥0𝑗𝑘 ≤ 2   (
𝑛

𝑗=1

∀ 𝑘 = 1, 2 … ,𝑚) (6) 

𝑦ℎ𝑘 = 1   (∀ 𝑣ℎ ∈ 𝑇, 𝑘 = 1, 2 … ,𝑚) (7) 

𝑦ℎ𝑘 ∈ {0, 1}  (∀ 𝑣ℎ ∈ 𝑉 ∖ 𝑇,𝑘 = 1, 2 … ,𝑚) (8) 

𝑥0𝑗𝑘 ∈ {0, 1, 2}  (𝑘 = 1, 2 … ,𝑚) (9) 

𝑥𝑖𝑗𝑘 ∈ {0, 1}  (𝑘 = 1, 2 … ,𝑚) (10) 

Constraint (2) ensures that all vertices 𝑣𝑙 ∈ 𝑊 are covered by at least one vertex. 

Constraint (3) ensures that each vertex 𝑣ℎ ∈ 𝑉, except 𝑣0, is visited at most once during 

the tour. Constraint (4) is the degree constraint and ensures that if vertex 𝑣ℎ ∈ 𝑉 is visited 

by vehicle k, then there will be an entering and exiting edge. Constraint (5) is the 

connectivity constraint which eliminates subtours. It ensures that for every subset S of V, 

there are at least 2 edges that connect a set S and the complementary set V\S. Constraint 

(6) ensures that for each vehicle k leaving the depot, there is a maximum of 2 edges for 

entering and leaving the depot. Constraint (7), (8), (9) and (10) are the binary and integer 

constraints. Specifically, constraint (7) ensures that vertex 𝑣ℎ ∈ 𝑇 must be visited once. 

Constraint (8) is a binary variable which equal to 1 if and only if vertex 𝑣ℎ is visited by 

vehicle k and belongs to the tour. Constraint (9) and (10) are to ensure that if only if edge 

(𝑣𝑖, 𝑣𝑗) belongs to the tour and is travelled by vehicle k, xijk takes value of 1. 
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The CTP was first introduced in 1981 [Current] and formulated in 1989 [Current 

and Schilling]. It was formulated as a linear integer program in 1995 [Gendreau et al.]. 

There are many variants of the CTP for different applications and a few of them are 

mentioned below. 

1. The mCTP is a natural extension of the single vehicle CTP, which is a 

generalization of the CTP. The objective is to design m Hamiltonian cycles over a subset 

of eligible vertices in the vertex set V to visit or cover all of the vertices in the complete 

undirected graph G. Three heuristics solution approaches were developed. 

2. The Generalized CTP (GCTP) was introduced by Motta et al. [2001]. It is another 

generalization of the CTP and consists of finding a minimum length Hamiltonian cycle 

over a subset of vertices in both vertex sets V and W, rather than exclusively in the vertex 

set V. A metaheuristic algorithm which follows the Greedy Randomized Adaptive Search 

Procedures (GRASP) [Feo et al., 1995] was proposed to solve the problem. 

3. A bi-objective variant of the CTP was discussed by Jozefowiez et al. [2007]. In 

this generalization, the constraints linked to coverage are replaced by a second objective. 

Thus, the problem seeks to minimize both the two conflicting objectives; tour length and 

the coverage distance via a multi-objective evolutionary algorithm. This approach avoids 

a priori parameterization of the problem rather than working with a family of related 

problems in which only the covering distance varies. 

4. Another multi-objective CTP for disaster relief operation planning was explored 

by Nolz et al. [2010] in which the demand of each node has to be satisfied by exactly one 

vehicle. It considers the minimization of three objectives: (1) the sum of distances 

between all nodes and their nearest facility, (2) the total tour length, and (3) the latest 
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arrival time at a node. As the first objective is in conflict with the second and third 

objectives, a bi-objective problem is solved by considering objectives 1 and 2 and then 

objectives 1 and 3. 

5. A CTP approach for the location of satellite distribution centers to supply 

humanitarian aid was proposed by Naji-Azimi et al. [2011]. This problem extends the 

multi-vehicle CTP to include multiple commodities, heterogeneous capacitated fleet and 

split deliveries. 

 

2.4 Relationship of CTP to other NP problems 

The CTP is related to the family of NP-hard problems, such as the Traveling 

Salesman Problem (TSP), Vehicle Routing Problem (VRP), and Covering Salesman 

Problem (CSP) etc. We will review some of these important classical problems and 

highlight the differences and relationship between them. 

 

2.4.1 Traveling Salesman Problem 

The Traveling Salesman Problem is one of the classic problems in Operations 

Research and a well-studied combinatorial optimization problem [Chen et al., 2010]. The 

TSP is hard to solve both theoretically and in practice. Solving the TSP has thus 

motivated a variety of solution algorithms including simple heuristics and nature-inspired 

meta-heuristics. 

Given a graph G = (N, E), of node set N and arc set E, the objective is to 

minimize the tour length of the traveling salesman. Starting from a node, a route is 

constructed through all nodes in N uniquely and returned to the originating node. From 



 

13 

the seminal paper published in 1954 [Dantzig et al.], the TSP has been extensively 

studied and much literature on TSP theories, formulations, applications and algorithms 

have been published. One of the earliest integer linear programming formulations by 

Dantzig et al. associates a binary variable xij to every arc (i, j), equal to 1 if and only if (i, 

j) is in the optimal route, i ≠ j. The formulation is: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 � 𝑐𝑖𝑗𝑥𝑖𝑗
(𝑖,𝑗)∈𝐸

 (1) 

Subject to 

�𝑥𝑖𝑗 = 1     ∀ 𝑖 = 1, … ,𝑛
𝑗=1

 (2) 

�𝑥𝑖𝑗 = 1     ∀ 𝑗 = 1, … , 𝑛
𝑖=1

 (3) 

� 𝑥𝑖𝑗
𝑖,𝑗∈𝑆

≤ |𝑆| − 1,     𝑆 ⊂ 𝑁,     2 ≤ |𝑆| ≤ |𝑁| − 1 (4) 

The objective function (1) minimizes the optimal tour cost. Constraint (2) and (3) are 

degree constraints which specify that every vertex is entered once. Constraint (4) presents 

the subtour elimination constraints. 

The TSP naturally arises as a subproblem in many transportation and logistics 

applications, for example the problem of arranging school bus routes to pick up the 

children in a school district.  This bus application is of important historical significance to 

the TSP, since it provided motivation for Merrill Flood, one of the pioneers of TSP 

research in the 1940s. More recent applications involve the scheduling of service calls at 

cable firms, the delivery of meals to homebound persons, the scheduling of stacker cranes 

in warehouses, the routing of trucks for parcel post pickup, etc [Applegate et al., 2011].  
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Although transportation applications are the most natural setting for the TSP, the 

simplicity of the model has led to many interesting applications in other areas. A classic 

example is the scheduling of a machine to drill holes in a circuit board or other object. In 

this case the holes to be drilled are the cities, and the cost of travel is the time it takes to 

move the drill head from one hole to the next. The technology for drilling varies from one 

industry to another, but whenever the travel time of the drilling device is a significant 

portion of the overall manufacturing process then the TSP can play a role in reducing 

costs. 

A major assumption of the TSP is that the salesman must uniquely visit every 

vertex on the graph. However, this assumption can be relaxed for many real world 

problems [Current et al., 1989]. Rural health care delivery and aircraft routing are 

examples in which all villages or cities do not need to be visited as long as they can be 

covered within a pre-determined distance from the visit point. 

The TSP has received a lot of research and study over the years; however it is 

more appropriate to model some real-world applications as a multiple TSP (mTSP). 

Many applications of the mTSP were discussed [Bektas, 2006], such as print scheduling, 

workforce planning, transportation planning, production planning and satellite systems. 

The mTSP model was used for the mission planning of autonomous mobile robots in 

various environments [Brummit et al., 1996][Zhong et al., 2002]. The mTSP is similar to 

the TSP and in general be defined as follows: Given a set of nodes, let there be m 

salesmen located at a single depot node. The remaining nodes that are to be visited are 

called intermediate nodes. Then, the mTSP consists of finding tours for all m salesmen, 

who all start and end at the depot, such that each intermediate node is visited exactly once 
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and the total cost of visiting all nodes is minimized. The cost metric can be defined in 

terms of distance, time, etc. 

A diagram of the solution for an mTSP with 15 nodes, inclusive of the depot, is 

shown below. 

 

 

 

 

 

Figure 1: Solution for an mTSP. 

In Gendreau et al. [1995], the CTP is related to many different variants of the 

TSP, such as the Prize Collecting Traveling Salesman Problem (PTSP), Selective 

Traveling Salesman Problem (STSP) and Generalized Traveling Salesman Problem 

(GTSP) by Fischetti et al. [1997]. 

The GTSP is a version of the classical TSP, in which the set of nodes N has been 

partitioned into clusters (not necessarily disjointed) of nodes, and the problem is to find a 

least cost tour that passes through exactly one node from each cluster. Thus, we can 

express the CTP as a GTSP by defining some nodes into sets. For each node in W (targets 

to be covered), we define a set in V which covers it. Also, for each node in T (nodes that 

must be visited), we define it as an individual set. Thus, we can solve the CTP by solving 

a GTSP on all the defined sets. 

 

Depot vertex 

Vertex that must be visited 

Tour 
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2.4.2 Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) is to design optimal delivery or collection 

routes from one or several depots to a number of geographically scattered cities or 

customers, subject to side constraints. It is one of the most important and well studied 

combinatorial optimization problems and plays an important problem in the fields of 

transportation, distribution and logistics. 

The VRP was proposed in 1959 [Dantzig et al.]. They described a real-world 

application regarding the delivery of gasoline to service stations and proposed the first 

mathematical programming formulation. Since then, hundreds of models and algorithms 

had been proposed for the optimal and approximate solution of different VRP versions. 

The interest in the VRP is motivated by its practical relevance and its considerable 

difficulty.  

The simplest and most studied of the VRP family is the capacitated VRP. Given a 

graph G = (V, A), where V = {1,.., n} is a set of vertices representing cities with the depot 

located at vertex 1, and A is the set of arcs. A distance matrix 𝐶 = �𝑐𝑖𝑗� is associated with 

every arc (i, j) and i ≠ j. In addition, there are m available vehicles based at the depot 

which are identical and have the same capacity D. The VRP consist of designing a set of 

least-cost vehicle routes such that each city is visited once by exactly one vehicle and all 

vehicle routes start and end at the depot. Some common side constraints  include 

[Laporte, 1992]: 

1. Capacity restrictions: A non-negative weight di is attached to each city and the sum of 

weights of any vehicle route may not exceed the vehicle capacity. 

2. Number of cities on any route is bounded above by q. 
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3. Total time restrictions: The length of any route may not exceed a prescribed bound L. 

4. Time windows: City i must be visited within the time interval [ai, bi] and waiting is 

allowed at city i. 

5. Precedence relations between pairs of cities. 

The VRP is related to the mTSP. If the VRP has m number of vehicles with 

capacity constraints removed and all cities have only unit demands, it reduces to an 

mTSP. Similarly, the mCTP reduces to a VRP when all cities must be visited and have 

only unit demands. 

An example of a classic VRP is shown below. 

 

Figure 2: A classic VRP [Beasley, 2012]. 

Figure 2 shows the situation in which a depot is surrounded by a number of 

customers who are to be supplied from the depot. The routes for the vehicles (with known 

capacities) are designed to minimize the total distance traveled while supplying the 

customers with known demands. The designed routes for the delivery vehicles are shown 

in Figure 3. 
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Figure 3: Solution for a VRP [Beasley, 2012]. 

 

2.4.3 Covering Salesman Problem 

A variant of the TSP was introduced by Current [1981] as the Covering Salesman 

Problem (CSP). The CSP is similar to the TSP, except that not all nodes need to be 

visited. The objective is to minimize the tour length of a subset of N number of nodes. 

For the nodes that are not on the tour, they must be within a pre-determined covering 

distance c of a node on the tour. Thus, the tour must cover each of the nodes rather than 

visit it directly. This problem may be considered as a generalization of the TSP. If the 

covering distance is zero (c = 0), each node must be visited directly to be covered. Thus, 

the CSP reduces to a TSP and is consequently NP-hard. 

The CSP was solved by constructing the optimal TSP tour over the minimum 

number of vertices for a feasible solution. This effectively solves the corresponding Set 

Covering Problem (SCP). As the associated SCP may have multiple optimal solutions 

with the same number of vertices, the minimum length tour is found by applying a TSP 

solver over all the optimal solutions of the SCP. 
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Two variants of the CSP, known as the Median Tour Problem (MTP) and 

Maximal Covering Tour Problem (MCTP) were introduced by Current et al. [1994]. 

Given a network of n nodes, both the MTP and MCTP seek to minimize the total tour 

length over a predefined number of p nodes (where p ≤ n) and maximize accessibility of 

the (n – p) covered nodes. In the MCTP, a node is covered if and only if it lies within a 

predefined distance from a tour node. In the MTP, the accessibility objective is to 

minimize the total demand multiplied by the travel distance that the covered nodes must 

traverse to reach their nearest tour node. 

The Covering Tour Problem has a close relationship with the CSP and can be 

considered as a generalization of the CSP [Golden et al., 2011]. The key distinction of the 

CTP is that some subset of the nodes must be on the tour while the remaining nodes need 

not be on the tour. Similar to the CSP, a node not on the tour must be within a predefined 

covering distance of a node on the tour. The CTP reduces to the CSP if the subset of 

nodes that must be on the tour is empty. Furthermore, the CTP reduces to the TSP when 

the subset of nodes that must be on tour consists of the entire node set.  

 A solution to a CSP example is shown in Figure 4.  

 

Figure 4: Solution for a CSP [Salari et al., 2012]. 
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2.4.4 Single Vehicle Routing Allocation Problem 

Vogt et al. [2007] presented a Single Vehicle Routing Allocation Problem 

(SVRAP) in which a variant of the SVRAP generalizes into the CTP. In the SVRAP, 

there is a single vehicle together with a set of customers, and the problem is one of 

deciding a route for the vehicle (starting and ending at given locations) such that it visits 

some of the customers. In contrast to the usual VRP, not all of the customers need to be 

visited. Customers not visited by the vehicle can either be allocated to a customer on the 

vehicle route, or they can be isolated. In addition to the tour routing costs, nodes covered 

by the tour incur an allocation cost, and nodes not covered by the tour incur a penalty 

cost. The objective is to minimize a weighted sum of routing, allocation and isolation 

costs. One special case of the general SVRAP is the CTP when the penalty costs are set 

high and the allocation costs are set to zero. 

For the SVRAP model to generalize into a CTP, the set of vertices 𝑣ℎ ∈ 𝑇 that 

must be on the tour are allocated to a set Fon, where {0} ∈ 𝐹𝑜𝑛 and 𝐹𝑜𝑛 ∈ 𝑉. The set of 

vertices 𝑣𝑙 ∈ 𝑊 that must be covered are allocated to a set Foff, where the vertices are off 

tour but are within the pre-determined distance c from an on tour vertex. Then the 

allocation cost for vertex i (on tour) to cover vertex j (off tour), dij, is 0 if vertex j is 

within distance c from vertex i. Otherwise, dij is large. 

 

2.5 In-transit Vigilant Covering Tour Problem 

The next chapter introduces and discusses a new variant of the CTP for a generic 

base security defense scenario. This variant, called the in-transit Vigilant CTP (VCTP) 

model, considers coverage with both vertices and edges. Table 1 summarizes the 
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characteristics of the various NP-hard problems (TSP, VRP, CSP and CTP) and some of 

their variants discussed. 

Problem Objective function Vertices in tour 
route 

Types of vertices Coverage No. of 
vehicles 

TSP / 
mTSP 

Minimize distance All Single No 1 / m 

GTSP Minimize distance Exactly 1 vertex 
from each cluster 

Partitioned into 
clusters 

No 1 

VRP Minimize distance All Single with 
demands 

No m with 
capacities 

CSP Minimize distance Unconstrained Single Yes by 
vertices only 

1 

CTP / 
mCTP 

Minimize distance 
while covering W 

Unconstrained in V 
All in T 

V can be visited 
T must be visited 
W must be covered 

Yes by 
vertices only 

1 / m 

GCTP Minimize distance 
while covering W 

Unconstrained V can be visited 
W must be covered 

Yes by 
vertices only 

1 

Bi-
objective 
CTP 

Minimize distance 
while covering W & 
minimize coverage 
distance 

Unconstrained in V 
All in T 

V can be visited 
T must be visited 
W must be covered 

Yes by 
vertices only 

1 

SVRAP Minimize weighted 
sum of distance, 
allocation & isolation 
cost 

All in Fon Fon must be visited 
Foff must be 
covered 

Yes by 
vertices only 

1 

VCTP / 
mVCTP 

Minimize distance 
while covering W 

Unconstrained in V V can be visited 
W must be covered 

Yes by both 
vertices and 
edges 

1 / m 

 
Table 1: Characteristics of related problems. 
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III. Journal Article 

3.1 Introduction 

The Maximization of Observability in Navigation for Autonomous Robotic 

Control (MONARC) project within the Air Force Institute of Technology (AFIT) has an 

overarching goal of the development of an autonomous robotic, network-enabled, Search, 

Track, ID, Geo-locate, and Destroy (Kill Chain) capability which would be effective in 

any environment, at any time.  

One area of interest in the MONARC project is mission planning for base security 

protection of Key Installations (KIN) from adversarial intrusions using autonomous 

Unmanned Ground Vehicles (UGVs). This UGV mission planning task is multifaceted 

and requires the consolidation of intelligence, management of system readiness, 

centralized operational planning and dissemination of Command and Control (C2) 

information. Sensory data from different locations around the KINs are fused into a 

Recognized Ground Situation Picture (RGSP) and augmented with intelligence from 

various agencies. A centralized C2 center consolidates and manages the real-time system 

serviceability and readiness state of the UGVs. The mission planners input the security 

requirements, such as key surveillance points, potential intrusion spots, Rules of 

Engagement (ROE), etc into a Ground Mission Planning System which provides a 

surveillance approach for use by the team of UGVs. 

The protection of a large KIN, such as a military airbase, requires a team of 

UGVs patrolling along certain routes to effectively cover numerous intrusion spots. The 

surveillance approach of the security defense task can be formulated as a combinatorial 
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optimization model, in which multiple security entities must visit multiple locations, 

while covering certain adversarial locations, in the shortest distance possible traveled by 

all entities. When adversarial locations are sensed by UGVs at their route location, we 

can model the problem as a Covering Tour Problem (CTP) [Current, 1981, Current et al., 

1989 and Grendreau et al., 1995]; the CTP is a Traveling Salesman Problem (TSP) with 

Set Covering Problem (SCP) structure. The multiple vehicle variant is a natural 

extension. Not addressed in prior research, but quite applicable in the current context, is 

the covering capability while a vehicle is transiting via edges between route locations. 

This in-transit vigilance component is important to the stated mission planning 

environment. A new variant of the multiple vehicle Covering Tour Problem (mCTP) 

model called the in-transit Vigilant CTP (VCTP) is developed and evaluated to meet this 

requirement as a mission planning tool, applicable to the base security problem. 

 

3.2 Background 

The CTP model has been applied extensively in the health care industry, 

especially for the deployment of mobile health care units traveling in developing 

countries [Hodgson et al., 1998]. Mobile health care units have access to a limited 

number of villages due to factors such as infrastructure restrictions, unit capacity and 

cost. Therefore, it is not feasible to travel to all villages. Instead, a tour route is planned 

so that the unvisited villages are within reasonable walking distance of the visited 

villages thereby allowing the needy health care when the health care units visit. The 

vehicle routes of the health care units are efficiently planned to reduce the amount of 

travel required, but to enough villages to provide sufficient overall medical coverage. A 
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real-life problem associated with the planning of mobile health care units was in the 

Suhum district, Ghana [Oppong et al., 1994] and solved by Hachicha et al. [2000] as a 

CTP. 

Another important application of the CTP is the placement of post box locations 

to reduce the traveling distance of the postal delivery service while ensuring maximum 

coverage [Labbé et al., 1986]. Good locations of post boxes to cover a region of users 

and an optimal route for mail distribution are constructed. Alternatively, this approach 

can be applied to the management of centralized post offices, i.e. post offices are 

centralized at towns with larger populations while the smaller towns nearby are covered 

by the centralized post offices. 

The CTP model has been applied to the transportation industry such as in the 

design of bi-level, hierarchical transportation networks [Current et al., 1994]. For an 

overnight mail delivery service provider such as DHL, Fedex etc, the optimal tour route 

represents the route taken by the primary vehicle (aircraft) to the distribution centers and 

the coverage radius is represented by the maximum distance travelled by the delivery 

trucks from the distribution centers to its customers. This ensures that the overall 

distribution cost is minimized and provides the required delivery service to its customers. 

The mCTP [Hachicha et al., 2000] is defined as a complete undirected graph 

𝐺 = (𝑉 ∪𝑊,𝐸) where 𝑉 ∪𝑊 is the vertex set, and 𝐸 = {(𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ∪𝑊, 𝑖 ≠ 𝑗} 

is the edge set. Vertex 𝑣0 is a depot (base station), V is the set of vertices that can be 

visited, 𝑇 ⊆ 𝑉 is the set of vertices that must be visited (𝑣0 ∈ 𝑇), and W is the set of 

vertices (or targets) that must be covered. A distance matrix 𝐶 = �𝑐𝑖𝑗�, which satisfies the 

triangle inequality, indicates the edge length between all vertices (𝑉 ∪𝑊) and is defined 
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for E. A final parameter is c, the pre-defined maximum size of the cover. A solution to 

the mCTP consists in defining a set of m vehicle routes of minimum total length, all 

starting and ending at the depot such that every vertex in W is covered, subject to some 

side constraints. Coverage of a vertex is satisfied if it lies within the pre-defined distance 

c from a vertex in V that belongs to a tour route. Such problems may be infeasible if no 

element of V covers an element of W. 

 

3.3 CTP for UGV Coverage 

One of the defined MONARC scenarios relates to the protection of KINs from 

potential adversarial intrusions. A team of UGVs are tasked to protect a critical 

installation. Their surveillance capabilities are augmented by static sensors located 

throughout the installation. Therefore, a RGSP is available to a mission planner to assist 

in finding UGV tour routes. The UGVs should only patrol routes that cover all the 

required checkpoints and the overall route length should be minimized. All UGVs 

originate from a base station, the depot. There are certain checkpoints that the UGVs 

must visit (these checkpoints are usually critical ones requiring compulsory surveillance) 

and there are also checkpoints that may be visited. There are also potential spots where 

the adversary may appear and these spots must be covered by visiting a checkpoint that is 

within a fixed proximity distance. Each checkpoint is visited by a UGV and all UGVs 

return to the base station.  

Coverage of targets by a visited checkpoint is defined as the circular area of a 

fixed radius, where any vertex within the area is covered by that checkpoint. The circular 

area of coverage is analogous to the effective range of a weapon or sensor system on-
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board the UGVs. Each UGV is modeled as an individual vehicle travelling on different 

routes of minimum length tours. During the route, the UGV covers targets and all targets 

must be covered for a feasible solution to the overall problem.  

There are some key assumptions and limitations made in modeling the base 

defense security scenario as an mCTP. They are as follows: 

a. All UGVs are homogeneous and have equal capabilities in movement and 

coverage. 

b. UGVs can visit as many vertices and transit as long as required. 

c. UGVs travel in a straight line between vertices. 

d. Potential adversarial spots are known at a specific point of time or are pre-defined 

and are thus part of the problem structure. 

In reality, UGVs, or for that matter any sensor craft, can sense while traveling. 

Thus, coverage only at vertices is artificially limiting and coverage while in transit 

between vertices must be considered. The CTP model is extended to include target 

coverage via traveled edges. This new variant of the CTP for a generic base security 

defense scenario, which considers coverage by both vertices and edges, is described in 

the next section. The extension of the in-transit Vigilant CTP into the mCTP variant is 

discussed in the subsequent section. 

 

3.4 The In-transit Vigilant CTP 

The CTP can be used to model an UGV assigned to protect a critical installation. 

However, a scenario may exist in which a potential adversary spot is not covered by any 
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checkpoints. In this case, the CTP model yields an infeasible solution. Figure 5 illustrates 

a single vehicle example in which an infeasible solution is achieved. 

 

 

 

 

 

 

Figure 5: Possible solution for a CTP 

The tour in Figure 5 is a minimum length tour constructed with all required 

vertices visited. However, the solution is infeasible since a visitable vertex to the 

uppermost vertex to cover does not exist even though the UGV could sense the target 

while in-transit. The CTP model is modified to allow coverage of such vertices.  

Considering coverage during transit is a logical assumption for a base security 

defense problem, i.e. UGVs can cover a potential adversarial spot during its movement 

between checkpoints. Thus, while an UGV is travelling along the route and transiting 

between checkpoints, it could pass within some fixed proximity distance and detect (or 

cover) the adversarial spot. Figure 6 compares the CTP solution from Figure 5 with a 

solution based on VCTP. 

 

 

 

 

Vertex that can be visited 

Vertex that must be visited 

Vertex to cover 

Tour 

Cover 
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Figure 6: Optimal solution for a CTP and Vigilant CTP. 

There are three distinct differences between the models. First, note that the vertex 

not covered in the previous example is now covered during a route transition with no 

change of route required. Thus, the revised model effectively increases the amount of 

coverage as both the traveled vertices and edges provide coverage. Second, we can 

shorten the tour length, as one of the visited vertices is not required in the VCTP tour 

since a tour edge provides the requisite coverage. Lastly, the solution based on the 

Vigilant CTP model is feasible. 

The VCTP relaxes some of the model constraints of the CTP via the coverage 

given by the traveled edges. This effectively sets the lower-bound optimal tour length and 

upper-bound target coverage for the CTP formulation and solution. 

As illustrated in Figure 6, the coverage of a target by a vertex was changed to 

coverage by an edge tour length, thus if the same vertices are considered, the solution of 

Solution based on CTP model   Solution based on Vigilant CTP model 

Vertex that can be visited 
Vertex that must be visited 
Vertex to cover 
Tour 
Cover 
In-Transition Cover 
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the VCTP model will travel on an equal or lesser number of vertices compared to the 

CTP model. Since all edge lengths satisfy the triangle inequality, the optimal tour length 

of the VCTP model will be equal or shorter than the CTP model, forming the lower-

bound optimal tour length. 

The VCTP model provides a larger coverage area as all vertices and edges lend 

coverage as compared to coverage via vertices for the CTP model only. The CTP model 

covers only the circular area around each traveled vertices; however, the VCTP model 

can cover the circular area and the “thick pencil” area between two traveled vertices. 

Thus, the VCTP is an upper bound on vertices covered. 

  

3.5 Mathematical Formulation 

The mathematical formulation for the VCTP is presented in this section. The 

basic VRP model [Dantzig et al., 1959] was used as a basis for the VCTP model. We 

utilize the two-index vehicle flow formulation in the single vehicle variant of the VCTP 

model [Toth et al., 2002]; it is extended into the three-index vehicle flow formulation for 

the multiple vehicle VCTP. The two-index vehicle flow formulation which uses O (n2) 

binary variables xij and O (n) binary variables yi, where xij and yi are defined as: 

𝑥𝑖𝑗 = �1, edge �𝑣𝑖 , 𝑣𝑗� is part of the tour
0, otherwise

� 

𝑦𝑖 = �1, vertex 𝑣𝑖  is part of the tour
0, otherwise

� 

An important component of the problem formulation lies in the introduction of 

two pre-processed matrices, αij
k and βi

k, which are defined as the in-transit edge coverage 

and vertex coverage matrices, respectively 
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For the in-transit edge coverage matrix αij
k, every vertex that must be covered (k), 

an i by j matrix is formulated to determine if edge (vi, vj) can provide in-transit vigilant 

coverage against vertex to cover k. Figure 7 illustrates in-transit vigilant coverage of 

vertex vk by edge (vi, vj) as it lies within the pre-determined perpendicular distance c from 

edge (vi, vj). 

 

 

 

Figure 7: In-transit vigilant coverage by edge (vi, vj) on vertex vk. 

Additionally, the construction of the matrix should be carefully considered as a 

vertex to be covered could lie within the perpendicular distance c from the edge, but fall 

outside the perpendicular boundaries of edge (vi, vj) as shown in Figure 8. The αij
k will 

still have a value of 0 in such a case. 

 

 

 

 

Figure 8: No coverage by edge (vi, vj) on vertex vk. 

 Thus, if we consider the triangle bounded by vertices vi, vj and vk, the following 2 

conditions must hold for vertex vk to be covered by edge (vi, vj): 

1. Vertex vk must lie within the pre-determined perpendicular distance c from edge 

(vi, vj). 

2. Angles at vertices vi and vj must be equal or less than 90 degs. 

vi vj 

vk c 

vi vj 

vk 
c 
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Therefore the value of αij
k is defined as: 

𝛼𝑖𝑗𝑘 = �
1, edge (𝑣𝑖 , 𝑣𝑗) covers 𝑣𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

Algorithm 1 defines the construction of the αij
k matrix: 

Given: Set of V vertices and set of W vertices (targets) with their coordinates and distance 
matrix C = (cij) 
Set αij

k = [0] of matrix size V2W (V x V x W) 
for all i from 1 to V, j from 1 to V (i ≠ j) and k from 1 to W do  

Construct triangle with corners i, j & k with corresponding coordinates (xi, yi), (xj, 
yj) & (xk, yk) 
Let the opposite side lengths be x, y & z where 

 𝑥 = 𝑐𝑗𝑘, 
 𝑦 = 𝑐𝑖𝑘, 
 𝑧 = 𝑐𝑖𝑗 

Let s = (x + y + z)/2 where s is the semiperimeter of the triangle 
Let ℎ =  2

𝑐𝑖𝑗
�𝑠(𝑠 − 𝑥)(𝑠 − 𝑦)(𝑠 − 𝑧) where h is the base height of the triangle 

if h ≤ c, do 
Let 𝐴𝑛𝑔𝑙𝑒 𝑖 =  𝑎𝑟𝑐𝑜𝑠 (𝑦

2+ 𝑧2−𝑥2

2𝑦𝑧
) 

Let 𝐴𝑛𝑔𝑙𝑒 𝑗 =  𝑎𝑟𝑐𝑜𝑠 (𝑥
2+ 𝑧2−𝑦2

2𝑥𝑧
) 

if angle i ≤ 90 degs AND angle j ≤ 90 degs, then 
αij

k = 1 
else, αij

k = 0 
end 

else, αij
k = 0 

end 
 Update αij

k 
end 

Algorithm 1: Construction of αij
k matrix (Edge Covering Matrix). 

The vertex covering matrix, βi
k, is also formulated as a binary matrix. Element (i, 

k) takes a value of 1 if vertex vi covers vertex vk; vertex vk lies within the pre-defined 

Euclidean distance c from vertex vi. 

We now formally define this single vehicle VCTP as an undirected graph 

𝐺 = (𝑉 ∪𝑊,𝐸) where 𝑉 ∪𝑊 is the vertex set where V = {vi, vj} is the set of vertices 
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that can be visited, W = {vk} is the set of targets that must be covered and 𝐸 =

{(𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ∪𝑊, 𝑖 ≠ 𝑗} is the edge set. Vertex 𝑣0 is a depot (base station). The 

distance matrix C = (cij) satisfies the triangle inequality and indicates the edge length for 

all edges in E. The parameter for the pre-defined maximum size of the cover is c. To 

prevent the formation of subtours, a Subtour Elimination (STE) constraint is added 

[Dantzig et al., 1954]. 

The formulation of the integer linear program of the VCTP model is as follows. 

Sets 

V Set of vertices to be visited, indexed by i and j 

W Set of vertices to be covered (targets), indexed by k 

E Set of edges (𝑣𝑖, 𝑣𝑗)|𝑣𝑖, 𝑣𝑗 ∈ 𝑉 ∪𝑊, 𝑖 ≠ 𝑗 

Data 

cij Distance of edge (vi, vj) 

αij
k 1 if edge (vi, vj) covers vertex vk, 0 otherwise. 

βi
k 1 if vertex vi covers vertex vk, 0 otherwise. 

Binary Decision Variables 

xij 1 if edge (vi, vj) is part of the tour, 0 otherwise. 

yi 1 if node vi is part of the tour, 0 otherwise. 
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𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 � 𝑐𝑖𝑗𝑥𝑖𝑗
(𝑣𝑖,𝑣𝑗)∈𝐸

 (1) 

Subject to 

�𝑥𝑖𝑗 = 𝑦𝑗      ∀ 𝑗 ∈ 𝑉
𝑖∈𝑉

 (2) 

�𝛽𝑖𝑘𝑦𝑖 + � 𝛼𝑖𝑗𝑘 𝑥𝑖𝑗
(𝑣𝑖,𝑣𝑗)∈𝐸𝑖∈𝑉

≥ 1     ∀ 𝑘 ∈ 𝑊 (3) 

�𝑥𝑖𝑗
𝑖∈𝑉

= �𝑥𝑗𝑙
𝑙∈𝑉

     ∀ 𝑗 ∈ 𝑉 (4) 

�𝑥1𝑗

|𝑉|

𝑗=1

= 1,�𝑥𝑖1

|𝑉|

𝑖=1

= 1 (5) 

��𝑥𝑖𝑗
𝑗∈𝑆𝑖∈𝑆

≤ |𝑆| − 1,     𝑆 ⊂ 𝑉,     2 ≤ |𝑆| ≤ |𝑉| − 1 (6) 

The objective function (1) minimizes the tour cost. Constraint (2) sets the vertices that are 

on tour. Constraint (3) ensures all targets are covered, either by a vertex or during transit 

of an edge. Constraint (4) balances flow through each vertex. Constraint (5) ensures that 

the tour start and end at the depot. Constraint (6) presents the subtour elimination 

constraint. 

 

3.6 Extension to Multiple Vehicle 

We next extend the VCTP model into a multiple vehicle VCTP (mVCTP). 

Similar to the VRP, there are m available identical vehicles based at the depot. The 

mVCTP involves designing a set of minimum total length vehicle routes satisfying the 

following constraints: 
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1. There are at most m vehicle routes and each start and end at the depot, v0. 

2. Each vertex of V belongs to at most one route. 

3. Each vertex of W must be covered by an edge or vertex in the routes. 

 This formulation explicitly indicates the vehicle that traverses an edge, in order to 

impose more constraints on the routes and overcome some of the drawbacks associated 

with the two-index model. We use the three-index vehicle flow formulation which uses O 

(n2m) binary variables xhij and O (nm) binary variables yhi, where xhij and yhi are as 

defined: 

𝑥ℎ𝑖𝑗 = �1, edge �𝑣𝑖 , 𝑣𝑗� in tour by vehicle ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

𝑦ℎ𝑖 = �1, vertex 𝑣𝑖  in tour by vehicle ℎ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

The formulation of the integer linear program of the mVCTP model is as follows. 

Sets and Data 

The notation for the sets and data are the same as the VCTP model.  

Binary Decision Variables 

xhij 1 if edge (vi, vj) in tour by vehicle h, 0 otherwise. 

yhi 1 if node vi in tour by vehicle h, 0 otherwise. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 � � 𝑐𝑖𝑗𝑥ℎ𝑖𝑗
(𝑣𝑖,𝑣𝑗)∈𝐸

𝑚

ℎ=1

 (1) 

Subject to 

��𝑥ℎ𝑖𝑗 = �𝑦ℎ𝑗

𝑚

ℎ=1

     (∀ 𝑗 ∈ 𝑉)
𝑖∈𝑉

𝑚

ℎ=1

 (2) 
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��𝛽𝑖𝑘𝑦ℎ𝑖 + � � 𝛼𝑖𝑗𝑘 𝑥ℎ𝑖𝑗
(𝑣𝑖,𝑣𝑗)∈𝐸

𝑚

ℎ=1𝑖∈𝑉

𝑚

ℎ=1

≥ 1     (∀ 𝑘 ∈ 𝑊) (3) 

�𝑥ℎ𝑖𝑗
𝑖∈𝑉

= �𝑥ℎ𝑗𝑙
𝑙∈𝑉

     (∀ 𝑗 ∈ 𝑉;ℎ = 1, … ,𝑚) (4) 

�𝑥ℎ1𝑗

|𝑉|

𝑗=1

= 1, �𝑥ℎ𝑖1

|𝑉|

𝑖=1

= 1      (ℎ = 1, … ,𝑚) (5) 

��𝑥ℎ𝑖𝑗
𝑗∈𝑆𝑖∈𝑆

≤ |𝑆| − 1,     (𝑆 ⊂ 𝑉; 2 ≤ |𝑆| ≤ |𝑉| − 1;ℎ = 1, … ,𝑚) (6) 

The objective function and the constraints for the mVCTP are similar to the VCTP 

model, with the inclusion of indices for the multiple vehicles. 

 

3.7 Empirical Study 

The VCTP and the mVCTP provide tour cost and target coverage benefits over 

the CTP and mCTP. Unfortunately, the benefits will likely come at some computational 

cost. An empirical study is designed and conducted, focused on examining the benefits 

and costs of the VCTP approach. For this effort, we focus on exact solutions leaving 

heuristics search methods for follow-on work.  

The integer linear program described was coded in [LINGO] and [Microsoft 

Excel] and tested on randomly generated test problems. Unlike many combinatorial 

optimization problems where test data and their accompanying optimal solutions are 

available on [ORLIB] and [TSPLIB], there is no existing database for CTP models. Thus, 

our test data were constructed from the various Solomon [1987, 2012] data sets, which 

are VRP with Time Windows data sets using Euclidean distances between vertices. These 
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routing data sets are classified into randomly generated data points set R1 and clustered 

data points set C1. As each data set contains 101 points, we randomly select the data 

points from the set for our study as the vertices to visit. The vertices to cover (targets) are 

selected from the remaining data points from the same data set. 

For the MONARC area of operations, we classify the potential adversarial 

locations into random and clustered data points to agree with the test problem structure. 

For a large battlefield with undefined boundaries, we assume that the adversaries appear 

in a homogeneous fashion and thus the randomly generated data points provide a good 

approximation. In a battlefield with some high value assets scattered throughout the area 

of operations, the threats can be identified into certain clusters and the clustered data set 

is a reasonable fit. Thus, we can make a reasonable case for using each type of problem. 

An unattractive feature of the Sub-Tour Elimination (STE) constraint is the 

exponential increase in the number of constraints with the number of N points to 

approximately 2N constraints. Miller-Tucker-Zemlin (MTZ) [1960] introduced another 

formulation of the STE constraint which adds n variables to the model, but dramatically 

decreases the number of constraints to approximately n2. However, the Dantzig 

formulation is much tighter than the MTZ as shown by Nemhauser et al. [1988]. 

Desrochers et al. [1991] strengthened the MTZ formulation by lifting the MTZ 

constraints into facets of the TSP polytope. Thus, the Desrochers STE constraint is 

implemented in the LINGO code as it provides a good compromise between the number 

of constraints and their tightness. Additionally, as the motivation of the paper is the 

validation of the VCTP integer linear model, we will only examine problems of small 
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data size, hence circumventing the computational concerns with exponential increase of 

STE constraints and reducing the computational time. 

The sets V and W were defined by randomly choosing |V| and |W| points from the 

first |V| + |W| points, respectively from the Solomon data sets. The first point from each 

data set is chosen as the depot, vertex v0. The cij coefficients were computed as the 

Euclidean distance between these points. The value of the covering distance c was 

arbitrarily chosen with a value of 10. For comparison, the data points occupied an 

approximate 80 x 80 grid. The αij
k and βi

k matrices were pre-processed with Microsoft 

Excel and read into LINGO. The LINGO source code is in Appendix A. 

Tests were run for various combinations of |V| and |W| on the random and 

clustered data sets. Specifically, the following values were tested: |V| = 20, 30, |W| = 5, 

10. The CTP and VCTP model were used to examine their robustness on the varied data 

sets. The single vehicle model variants were employed to reduce computational effort and 

enable better identification of abnormalities. The test runs were executed for 24 levels, i.e. 

|V|, |W|, random/clustered data points and CTP/VCTP models, for 10 random data sets 

each. Thus, a total of 160 data sets were run. The test data sets appear in Appendix B. 

For comparison, the most optimal tour taken, tour length and computational effort 

were recorded for both models. The number of targets covered by vertices and edges 

were also collected for the VCTP model.  

The results are summarized in Table 2 to 5 with the headings are defined as: 

Tour length:  Optimal tour length; 

Iterations:  Number of iterations required by LINGO 11.0; 

Tour vertices:  Number of vertices visited (including depot); 



 

38 

Vertex coverage: Number of targets covered by vertices; 

Edge coverage: Number of targets covered by edges. 

 

Table 2: Results for |V| = 20 and |W| = 5. 
 

Problem CTP model VCTP model 
Tour 

length 
Tour 

vertices 
Iterations Tour 

length 
Tour 

vertices 
Iterations Vertex 

coverage 
Edge 

coverage 
R101 124.566 4 65,062 124.566 4 87,032 5 0 
R102 Infeasible - - 118.6011 5 51,037 2 3 
R103 Infeasible - - 85.16839 3 14,520 1 4 
R104 Infeasible - - 133.1632 5 162,410 3 2 
R105 177.1577 5 120,020 176.0813 5 178,926 4 1 
R106 140.7824 5 1,783 136.6277 5 7,233 4 1 
R107 Infeasible - - 134.9327 5 118,764 3 2 
R108 Infeasible - - 121.5904 5 71,216 3 2 
R109 Infeasible - - Infeasible - - - - 
R110 Infeasible - - 139.4547 6 28,749 4 1 

R1 avg 147.50 4.67 62,288 145.76 4.78 79,987 3.22 1.78 
C101 153.886 5 143,137 153.6151 4 100,712 4 1 
C102 Infeasible - - 120.069 3 2,708 1 4 
C103 192.1403 5 16,689 192.0509 4 31,158 4 1 
C104 177.3902 6 159,729 173.2213 5 45,544 3 2 
C105 170.9239 5 238,430 162.565 4 489,711 4 1 
C106 88.36234 4 10,351 85.09786 4 44,258 4 1 
C107 Infeasible - - 179.8654 5 29,998 3 2 
C108 Infeasible - - Infeasible - - - - 
C109 Infeasible - - Infeasible - - - - 
C110 143.7321 4 114,153 143.7321 4 114,153 5 0 

C1 avg 154.41 4.83 113,748 151.71 4.13 107,280 3.50 1.50 
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Table 3: Results for |V| = 20 and |W| = 10. 
 
Problem CTP model VCTP model 

Tour 
length 

Tour 
vertices 

Iterations Tour 
length 

Tour 
vertices 

Iterations Vertex 
coverage 

Edge 
coverage 

R101 133.0123 7 162,318 127.0204 5 46,268 8 2 
R102 Infeasible - - 157.3024 5 6,687 5 5 
R103 Infeasible - - 184.0486 6 93,927 6 4 
R104 Infeasible - - 162.241 5 363,884 4 6 
R105 Infeasible - - Infeasible - - - - 
R106 Infeasible - - 182.347 6 9,322 8 2 
R107 Infeasible - - 213.2143 8 55,003 5 5 
R108 Infeasible - - 186.6751 5 100,927 4 6 
R109 Infeasible - - Infeasible - - - - 
R110 Infeasible - - 148.0407 6 11,094 8 2 

R1 avg 133.01 7.00 162,318 127.02 5.75 85,889 6.00 4.00 
C101 220.2951 7 6,131 216.273 5 7,416 7 3 
C102 Infeasible - - 227.401 6 141,213 3 5 
C103 229.1829 7 120,279 223.3114 5 49,836 7 3 
C104 221.4393 7 225,792 214.0772 5 206,575 5 5 
C105 Infeasible - - 170.9239 5 67,945 7 3 
C106 Infeasible - - 192.1624 7 35,178 7 3 
C107 Infeasible - - 179.8654 5 80,666 5 5 
C108 Infeasible - - Infeasible - - - - 
C109 Infeasible - - Infeasible - - - - 
C110 Infeasible - - Infeasible - - - - 

C1 avg 223.64 7.00 117,401 217.89 5.43 84,118 5.86 3.86 
 
 

Table 4: Results for |V| = 30 and |W| = 5. 
 

Problem CTP model VCTP model 
Tour 

length 
Tour 

vertices 
Iterations Tour 

length 
Tour 

vertices 
Iterations Vertex 

coverage 
Edge 

coverage 
R101 124.566 4 2,110,132 124.566 4 4,582,202 5 0 
R102 81.31466 4 71,233 81.31466 4 85,620 5 0 
R103 Infeasible - - 85.16839 3 90,267 1 4 
R104 116.5963 6 273,980 115.5935 5 457,159 4 1 
R105 165.3386 5 8,075,691 165.3386 5 24,509,374 5 0 
R106 140.679 5 65,905 136.6277 5 185,666 4 1 
R107 Infeasible - - 117.1561 5 141,753 2 3 
R108 117.1231 5 4,815,096 117.1231 5 11,537,324 5 0 
R109 Infeasible - - 102.6575 5 341,768 2 3 
R110 147.754 5 1,632,075 136.8977 6 5,601,861 3 2 

R1 avg 127.62 4.86 2,434,873 125.35 4.70 4,753,299 3.60 1.40 
C101 150.652 5 12,639,563 150.652 5 12,496,739 5 0 
C102 116.0504 5 71,723 109.0399 4 188,004 3 2 
C103 191.3442 6 10,465,191 191.3354 4 16,372,338 4 1 
C104 174.7859 6 21,694,919 173.1091 5 20,295,879 3 2 
C105 170.9239 5 22,827,889 162.565 4 16,574,573 4 1 
C106 72.82747 3 238,103 72.82747 3 400,078 5 0 
C107 Infeasible - - 175.747 5 4,769,732 2 3 
C108 163.7361 6 6,327,886 163.7307 5 5,056,208 4 1 
C109 171.6362 6 29,558,883 166.9823 3 35,535,858 2 3 
C110 120.7869 4 75,859 120.7869 4 120,336 5 0 

C1 avg 148.08 5.11 11,544,446 145.67 4.20 11,180,975 3.70 1.30 
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Table 5: Results for |V| = 30 and |W| = 10. 
 
Problem CTP model VCTP model 

Tour 
length 

Tour 
vertices 

Iterations Tour 
length 

Tour 
vertices 

Iterations Vertex 
coverage 

Edge 
coverage 

R101 132.5805 7 120,200 127.0204 5 262,229 8 2 
R102 160.3054 8 138,887 157.3024 5 352,454 5 5 
R103 Infeasible - - 178.5465 6 461,902 6 4 
R104 177.7494 10 35,179,360 162.241 5 37,613,680 4 6 
R105 Infeasible - - 183.5834 5 1,435,766 5 5 
R106 162.0383 7 185,151 159.0077 6 81,644 7 3 
R107 Infeasible - - 189.0305 8 411,934 5 5 
R108 138.9221 8 12,843,343 134.9712 7 32,451,923 8 2 
R109 Infeasible - - 132.0172 6 357,727 7 3 
R110 161.7819 9 294,380 148.0407 7 390,280 8 2 

R1 avg 155.56 8.17 8,126,887 148.10 6.00 7,381,954 6.30 3.70 
C101 215.9099 7 8,112,801 212.0746 5 17,819,282 7 3 
C102 216.4693 8 4,427,765 204.0802 6 1,556,739 5 5 
C103 226.3285 7 12,494,718 220.4994 5 8,249,504 7 3 
C104 218.2831 7 69,249,875 214.0772 5 78,678,647 5 5 
C105 Infeasible - - 170.9239 5 2,965,931 7 3 
C106 Infeasible - - 170.5045 5 2,292,541 7 3 
C107 Infeasible - - 175.747 5 9,761,083 4 6 
C108 163.9464 7 2,493,496 163.7307 5 5,356,536 5 5 
C109 207.3529 8 55,206,267 194.5455 5 25,891,461 3 7 
C110 180.1757 7 2,300,252 177.4336 4 7,855,860 5 5 

C1 avg 204.07 7.29 22,040,739 198.06 5.00 16,042,758 5.50 4.50 
 

 

We notice the following general observations from Tables 2 to 5: 

1. For data sets which yielded feasible solutions for both CTP and VCTP models, the 

VCTP tours are always shorter. 

2. The vertex coverage dominates but edge coverage is utilized for VCTP models. 

3. Many more problems have feasible solutions when edge coverage is exploited. 

Graphical examples comparing tour solutions from the CTP and VCTP models, 

for data sets C101 and R101, are shown in Figure 9 and 10, respectively. 
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Figure 9: Comparison of CTP (left) and VCTP (right) solution for data set C101. 

Figure 9 provides a scatter plot of cluster data set C101 with |V| = 30, |W| = 10 

with solutions from the CTP and VCTP model that clearly illustrate the difference in 

coverage. We observe that the CTP model requires 7 traveled vertices and an overall 

longer tour length to cover all targets. The VCTP model requires only 5 vertices and 2 

edges for full coverage with a shorter tour length. 

Depot vertex 
Vertex that can be visited 
Vertex to cover 
Tour 
Cover 
In-Transition Cover 
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Figure 10: Comparison of CTP (left) and VCTP (right) solution for data set R101. 

For the random data set R101, with |V| = 30, |W| = 10, we see a significant 

difference in the optimal tour route between the CTP and VCTP model. The original 

model requires 10 traveled vertices to cover all 10 targets. The VCTP model utilizes 5 

vertices and all 5 edges for target coverage. 

 

3.8 Analysis of Results 

From the raw results, we calculated the following Measures of Performance 

(MOPs) to further compare the performance of both models: 

1. Number of times the Vigilant CTP model has a shorter tour length than the 

original CTP model. 

2. Average percentage tour length savings. 

3. Average percentage of targets covered by edges. 

4. Computational efficiency (in number of iterations). 
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Generally, the VCTP model performed better than the CTP model in an 

operational sense not considering the computational burden. The number of infeasible 

solutions for each combination of test runs is shown in Table 6. 

Table 6: Number of infeasible solutions for each combination of data sets. 

Problem |V| |W| CTP model VCTP model 
R1 

20 
5 7 1 

C1 4 2 
R1 10 9 2 
C1 7 3 
R1 

30 
5 3 0 

C1 1 0 
R1 10 4 0 
C1 3 0 

Total  38 8 
 

Of the 80 problems, there were only 8 infeasible problems using the VCTP 

model. However, there were 38 infeasible problems using the CTP model. The main bulk 

of infeasibilities occurred for the |V| = 20, |W| = 10 scenario which is reasonable as the 

number of available vertices for travel may not be sufficient to cover the proportionally 

large number of targets, given the fixed coverage distance. 

We also compared results, based on the optimal tour length generated. A shorter 

tour length equates to better performance. The raw results showed that the VCTP model 

performed better in 63 instances than the CTP model. The number of times of VCTP 

superior performance, identical performance and infeasibilities of the two models is 

tabulated in Table 7. 
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Table 7: Comparison of performance between the CTP and VCTP models. 

Problem |V| |W| Better 
performance 

Identical 
performance 

Infeasibilities on 
both models 

R1 

20 
5 8 1 1 

C1 7 1 2 
R1 10 8 0 2 
C1 7 0 3 
R1 

30 
5 6 4 0 

C1 7 3 0 
R1 10 10 0 0 
C1 10 0 0 

Total  63 9 8 
 

A non-parametric binomial test is conducted with the null hypothesis of same 

performance by both models and alternate hypothesis of difference performance based on 

the Table 7 results. 

𝐻0:𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑇𝑃 = 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑉𝐶𝑇𝑃 

𝐻1:𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐶𝑇𝑃 ≠ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑉𝐶𝑇𝑃 

For α = 0.01, the critical region lies outside the confidence interval of 72 �1
2
� ±

2.326�72(1
2
)(1
2
) = [26.1, 45.9]; we see 63 instances of better performance meaning the 

null hypothesis is rejected at the 99% significant level and we conclude that the VCTP 

model performs better. 

We also observed that the VCTP model performed better as the number of targets 

increases. This is attributed to the complimentary capability of vertex and edge coverage; 

as the CTP is unable to cover as many targets based on vertex coverage alone. 

The average tour length for each solved problem was computed to compare the 

CTP and VCTP performance. The average tour length of the original CTP model was 

used as the basis and Table 8 shows the percentage of average tour length savings. 
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Table 8: Percentage of savings in average tour lengths. 

Problem |V| |W| Average tour length savings (in %) 
R1 

20 
5 1.18 

C1 1.74 
R1 10 4.50 
C1 2.57 
R1 

30 
5 1.78 

C1 1.63 
R1 10 4.80 
C1 2.94 

Total  2.64 
 

The overall average tour length savings was 2.64%. For each problem set, we 

observed that the optimal tour length of the VCTP model is always less than or equal to 

the original CTP model. This agrees with our claim that the VCTP sets the lower-bound 

tour length for the original CTP solution. Again, we observe that the VCTP model 

yielded a higher percentage of average tour length savings when the number of targets 

was higher.  

The next MOP examines the improvement in coverage due to the edge covering 

capability of the VCTP model. We calculated the percentage of targets covered by edges. 

The results are tabulated in Table 9. 

Table 9: Percentage of targets covered by edges in the VCTP model. 

Problem |V| |W| Average number of targets 
covered by edges (in %) 

R1 

20 
5 35.6 

C1 30.0 
R1 10 40.0 
C1 39.7 
R1 

30 
5 28.0 

C1 26.0 
R1 10 37.0 
C1 45.0 

Total  35.2 
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The overall percentage of targets covered by edges is significant at 35.2%. In the 

presence of higher number of targets, the VCTP model provided more coverage via the 

edges. As expected, the edge covering capability is exploited by the route construction. 

Computational efficiency of the two models was compared using the number of 

iterations (branch and bound nodes) required to generate the optimal tour length in 

LINGO 11.0. Only instances where both the original CTP and VCTP model gave feasible 

solutions were compared. The percentage of computational efficiency was calculated as 

the difference in the number of iterations between the two models divided by the number 

of iterations used by CTP. The overall percentage in computational efficiency is a 

weighted average based on the number of instances across each problem set. The 

comparison of the computational efficiency is shown in Table 10. 

Table 10: Number of iterations by both models and percentage comparison. 

Problem |V| |W| 
Average number of iterations Improvement of 

computational 
efficiency (in %) CTP model VCTP 

model 
R1 

20 
5 62,288 91,064 - 46.20 

C1 113,748 137,589 -  20.96 
R1 10 162,318 46,268 71.50 
C1 117,401 87,942 25.09 
R1 

30 
5 2,434,873 6,708,458 - 175.52 

C1 11,544,446 11,893,335 -  3.02 
R1 10 8,126,887 11,858,702 -  45.92 
C1 22,040,739 20,772,576 5.75 

Overall -  38.30 
 

The VCTP model requires significantly more computational effort to generate 

optimal tour lengths. This is expected as the VCTP model uses V2W more variables due 

to the additional αij
k related variables for edge coverage computation. For comparison, in 



 

47 

a |V| = 30, |W| = 10 scenario, there are 970 and 9970 variables in CTP and VCTP, 

respectively.  

 

3.9 Other extensions 

The VCTP is a baseline model for a generic base security defense scenario. It is 

natural to discuss other extensions to improve the computational efficiency and the 

problem formulation. Some areas for further research are as listed: 

1. Heuristic Method. The VCTP is NP-hard. Furthermore, our results show the 

problems are hard in practice. A heuristic is a polynomial time algorithm that produces 

optimal or near optimal solutions on some input instances [Feige, 2005]. For a relatively 

small instance of |V| = 30, |W| = 10, we observed that 78 million iterations by LINGO 

11.0 are required. For a real-world scenario where |V| could go quite large, exact solvers 

are impractical and heuristic methods should be developed. As the VCTP is a TSP with 

SCP structure, a potential heuristic approach is the combination of the GENIUS heuristic 

[Gendreau et al., 1992] for TSP with a modified version of the PRIMAL1 set covering 

heuristic [Balas et al., 1980] to account for the additional edge coverage capability.  

2. Multiple vehicle variant. The TSP has received a lot of research attention; the 

multiple TSP is more adequate to model real-world applications [Bektas, 2006]. 

Similarly, further research should be conducted on the multiple vehicle variant of the 

VCTP model. 

3. Dynamic Routing. Based on the assumptions made for the VCTP, it is a static and 

deterministic problem, where all inputs are known beforehand and routes do not change 

during execution [Pillac, 2011]. Real-world applications often include two important 
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dimensions: evolution and quality of information. Evolution implies that information may 

change during execution of routes and quality reflects possible uncertainty on the 

available data. Thus, for a dynamic and stochastic VCTP, the tour route can be redefined 

in an ongoing fashion based on changing travel vertices and appearance of pop-up 

targets. 
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IV. Conclusions 

4.1 Contributions 

An application of the newly defined VCTP is used to model an UGV assigned to 

base security protection. The VCTP has the novel additional edge coverage, to model the 

sensing capability of the UGV while traveling. 

The empirical study showed that the VCTP model performed better across all 

combinations of scenarios. Specifically, it performed significantly better when more 

targets need to be covered. For the same problem data sets, the VCTP is more robust 

yielding more feasible solutions (72 out of 80) as compared to the CTP (42 out of 80). All 

VCTP optimal tour lengths were also equal or shorter than the CTP model, with an 

average tour length savings of 2.64%. The edge coverage capability of the VCTP 

accounted for 35.2% of target coverage. However, the VCTP required 38.3% more 

computational effort for tour length generation. 

The main contribution of this thesis is a nascent combinatorial optimization model 

for routing UGVs while highlighting the importance and usefulness of both vertex and 

edge coverage. This model can be utilized as a first cut mission planning optimizer tool to 

address the MONARC base security problem. 

4.2 Future Work 

The immediate focus for future research is the development of a high quality and 

quick running heuristic solver. As real-world problems are typically large sized, exact 

solvers are inadequate as they are computationally expensive and require significant 

running time. Additionally, a force protection scenario may evolve quickly with changes 



 

50 

in the routing points or appearance of adversaries. Thus, a fast heuristic solver to provide 

real-time updates of near-optimal routes is important and usually sufficient. This 

reinforces the need to complement the exact solver in the provision of a holistic mission 

planning tool with preliminary optimal and pseudo-dynamic near-optimal routing 

capabilities. 

The flexibility of the TSP formulation with dual set covering structure allows 

customization for different applications. Additional indices and side constraints can be 

included for multiple vehicle and other unique variants respectively to better mimic real-

world siutations. For example, some UGVs have better sensory coverage when static (at a 

vertex) than during transit (along an edge). The edge and vertex coverage matrices (αij
k 

and βi
k) are therefore modified accordingly. 
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Appendix A. LINGO source code 

LINGO source code for VCTP for |V| = 30 and |W| = 10 

model: 
 
sets: 
Vertex / 1..30 /: V; !Number/Sequence of vertices/nodes; 
Target / 1..10 /: T; !Number of targets to be covered; 
Link1 (Vertex, Vertex): C, X; !where C is the distance 
matrix and X(i,j) = 1 if arc i to j is part of tour; 
Node (Vertex): Y; !where Y(i) = 1 if node i is part of 
tour; 
Link2 (Target, Vertex, Vertex): alpha; !where alpha(k,i,j) 
= 1 if arc(i,j) covers node k; 
Link3 (Target, Vertex): beta; !where beta(k,i) = 1 if node 
i covers node k; 
  
endsets 
 
data: 
C = @ole('\filename.xlsx','Matrix'); !Distance matrix from 
excel; 
alpha = @ole('\filename.xlsx','alpha'); !Pre-processed arc 
covering matrix from excel; 
beta = @ole('\filename.xlsx','beta'); !Pre-processed matrix 
to be loaded from excel; 
 
@text() = @writefor( Link1(i,j)|X(i,j) #EQ# 1: 
'Route from ',i, ' to ',j, @newline(1)); !Output optimal 
route taken; 
@text() = @writefor( Node(i)|Y(i) #EQ# 1: 
'Vertex ',i,' used', @newline(1)); !Output vertices 
traveled on optimal route; 
 
enddata 
 
min = @sum(Link1: C * X); 
!Objective function is to minimize the length of tour; 
 
@for(Vertex(j): 
@sum(Vertex(i)|i #NE# j: X(i,j)) = Y(j); 
!To set which nodes are on tour (Linking constraint to 
ensure if node(j) is on tour, there is EXACTLY 1 arc that 
flows in); 
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); 
 
@for(Target(k): 
@sum(Link3(k,i): beta * Y) + @sum(Link2(k,i,j): alpha * X) 
> 1; 
!To ensure that all targets are covered by either a node or 
transit of an arc; 
); 
 
@for(Vertex(j): 
@sum(Vertex(i)|i #NE# j: X(i,j)) - @sum(Vertex(l)|j #NE# l: 
X(j,l)) = 0; 
!To ensure balance flow through all nodes; 
); 
 
@sum(Link1(i,j)|i #EQ# 1 #AND# i #NE# j: X) = 1; 
@sum(Link1(i,j)|j #EQ# 1 #AND# i #NE# j: X) = 1; 
!To ensure that the tour starts from vertex 1 (depot 
constraint) and ends at vertex 1; 
 
N = @size(Vertex); !Number of elements in the set; 
 
@for(Vertex(k): 
@for(Vertex(j)|j #GT# 1 #AND# j #NE# k: V(j) > V(k) + 
X(k,j) - (N-2)*(1 - X(k,j)) + (N-3)*X(j,k)); 
); 
!Miller-Tucker-Zemlin (MTZ) subtour elimination constrains 
improved by Descrochers and Laporte (1991); 
 
@for(Link1: @bin(X)); !For binary values of X; 
@for(Node: @bin(Y)); !For binary values of Y; 
 
end 

 
  



 

53 

Appendix B. Data sets 

Table 11 and 12 below show the data points for the random set R1 with |V| = 30 and 20 

respectively. For data sets with |W| = 5, the |W| values for S/N 1 to 5 are taken. 

Table 11: Data points for random set R1 with |V| = 30 

  S/N R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 
  x y x y x y x y x y x y x y x y x y x y 

|V| 

1 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 
2 53 52 49 42 64 42 61 52 20 26 17 34 18 24 50 35 63 23 26 27 
3 50 35 26 35 22 22 20 26 57 48 4 18 6 68 24 12 25 21 30 25 
4 42 7 45 30 2 60 25 24 40 60 37 56 10 20 37 56 37 47 30 60 
5 35 69 18 24 20 40 63 65 55 5 26 27 41 37 11 14 42 7 53 12 
6 20 50 49 73 56 37 15 77 8 56 40 60 35 69 49 11 35 17 20 26 
7 19 21 22 27 18 18 45 10 10 43 5 30 17 34 53 12 15 60 25 24 
8 15 19 26 52 2 48 46 13 20 65 62 77 55 5 47 16 6 38 65 55 
9 25 24 15 19 55 45 45 30 27 43 20 50 63 23 26 52 20 50 55 20 

10 37 56 44 17 5 5 15 47 49 73 63 23 45 30 63 65 62 77 6 68 
11 55 45 37 47 62 77 14 37 41 37 56 39 27 69 57 29 25 24 14 37 
12 63 23 63 65 37 31 65 55 15 47 36 26 37 31 16 22 55 20 53 52 
13 10 43 55 45 27 69 53 12 2 48 25 24 56 39 47 47 55 60 19 21 
14 11 14 40 25 35 40 41 37 28 18 32 12 4 18 22 27 10 43 11 31 
15 61 52 49 58 37 56 49 11 50 35 25 21 15 30 31 52 65 55 63 65 
16 65 20 15 10 12 24 45 20 49 42 40 25 25 30 44 17 55 5 37 56 
17 67 5 63 23 47 16 15 60 49 58 24 12 60 12 5 30 41 37 2 60 
18 2 60 11 31 5 30 13 52 26 35 15 10 11 31 41 37 47 16 63 23 
19 57 68 23 3 53 52 62 77 19 21 8 56 49 42 15 60 28 18 55 60 
20 14 37 12 24 49 42 67 5 21 24 6 38 55 54 20 26 20 20 49 73 
21 53 43 15 77 11 14 36 26 53 12 15 19 36 26 31 67 37 56 47 16 
22 23 3 65 55 53 43 65 20 30 60 42 7 31 52 55 20 45 30 15 60 
23 45 65 20 20 13 52 5 30 22 22 65 55 26 35 2 60 5 30 35 69 
24 26 35 22 22 60 12 2 60 23 3 11 14 45 20 25 24 56 37 15 10 
25 30 60 13 52 15 77 8 56 57 29 53 43 22 27 15 30 32 12 41 49 
26 21 24 42 7 6 38 40 60 20 50 41 49 31 67 35 17 18 24 24 58 
27 26 27 53 12 10 20 4 18 20 40 45 10 64 42 20 40 45 10 6 38 
28 64 42 47 16 20 26 20 50 35 40 45 30 16 22 65 20 5 5 61 52 
29 55 20 18 18 45 65 35 40 11 31 60 12 30 25 25 30 11 31 55 45 
30 45 20 28 18 65 55 42 7 40 25 55 5 10 43 26 35 14 37 22 27 

|W| 

1 6 38 53 43 61 52 12 24 55 60 56 37 28 18 14 37 11 14 18 18 
2 55 60 30 60 56 39 47 16 2 60 2 48 46 13 35 40 40 25 57 29 
3 16 22 20 26 50 35 49 58 53 52 49 58 53 12 60 12 30 60 49 58 
4 28 18 56 37 49 58 27 43 60 12 49 42 65 55 32 12 27 43 15 19 
5 63 65 27 43 63 65 10 43 18 24 65 20 18 18 40 60 15 30 13 52 
6 22 27 6 38 20 65 57 68 26 52 57 29 15 77 42 7 15 19 20 40 
7 13 52 55 5 24 58 55 5 11 14 45 20 49 58 36 26 49 58 64 42 
8 49 42 45 10 55 5 55 54 24 12 30 25 65 20 18 24 63 65 57 68 
9 41 49 45 65 37 47 40 25 25 24 61 52 55 60 20 50 41 49 31 67 

10 20 26 8 56 16 22 49 42 12 24 35 40 41 49 27 69 37 31 40 25 
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Table 12: Data points for random set R1 with |V| = 20 

 
  S/N R101 R102 R103 R104 R105 R106 R107 R108 R109 R110 
  x y x y x y x y x y x y x y x y x y x y 

|V| 

1 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 
2 53 52 63 65 37 31 61 52 20 26 17 34 18 24 50 35 63 23 26 27 
3 50 35 55 45 27 69 20 26 57 48 4 18 6 68 24 12 25 21 30 25 
4 42 7 40 25 35 40 25 24 40 60 37 56 10 20 37 56 37 47 30 60 
5 35 69 49 58 37 56 63 65 55 5 26 27 41 37 11 14 42 7 53 12 
6 20 50 15 10 12 24 15 77 8 56 40 60 35 69 49 11 35 17 20 26 
7 19 21 63 23 47 16 45 10 10 43 5 30 17 34 53 12 15 60 25 24 
8 15 19 11 31 5 30 46 13 20 65 62 77 55 5 47 16 6 38 65 55 
9 25 24 23 3 53 52 45 30 27 43 20 50 63 23 26 52 20 50 55 20 

10 37 56 12 24 49 42 15 47 49 73 63 23 45 30 63 65 62 77 6 68 
11 55 45 15 77 11 14 14 37 41 37 56 39 27 69 57 29 25 24 14 37 
12 63 23 65 55 53 43 65 55 15 47 36 26 37 31 16 22 55 20 53 52 
13 10 43 20 20 13 52 53 12 2 48 25 24 56 39 47 47 55 60 19 21 
14 11 14 22 22 60 12 41 37 28 18 32 12 4 18 22 27 10 43 11 31 
15 61 52 13 52 15 77 49 11 50 35 25 21 15 30 31 52 65 55 63 65 
16 65 20 42 7 6 38 45 20 49 42 40 25 25 30 44 17 55 5 37 56 
17 67 5 53 12 10 20 15 60 49 58 24 12 60 12 5 30 41 37 2 60 
18 2 60 47 16 20 26 13 52 26 35 15 10 11 31 41 37 47 16 63 23 
19 57 68 18 18 45 65 62 77 19 21 8 56 49 42 15 60 28 18 55 60 
20 14 37 28 18 65 55 67 5 21 24 6 38 55 54 20 26 20 20 49 73 

|W| 

1 6 38 53 43 61 52 12 24 55 60 56 37 28 18 14 37 11 14 18 18 
2 55 60 30 60 56 39 47 16 2 60 2 48 46 13 35 40 40 25 57 29 
3 16 22 20 26 50 35 49 58 53 52 49 58 53 12 60 12 30 60 49 58 
4 28 18 56 37 49 58 27 43 60 12 49 42 65 55 32 12 27 43 15 19 
5 63 65 27 43 63 65 10 43 18 24 65 20 18 18 40 60 15 30 13 52 
6 22 27 6 38 20 65 57 68 26 52 57 29 15 77 42 7 15 19 20 40 
7 13 52 55 5 24 58 55 5 11 14 45 20 49 58 36 26 49 58 64 42 
8 49 42 45 10 55 5 55 54 24 12 30 25 65 20 18 24 63 65 57 68 
9 41 49 45 65 37 47 40 25 25 24 61 52 55 60 20 50 41 49 31 67 

10 20 26 8 56 16 22 49 42 12 24 35 40 41 49 27 69 37 31 40 25 
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Table 13 and 14 below show the data points for the clustered set C1 with |V| = 30 and 20 

respectively. Similarly, for data sets with |W| = 5, the |W| values for S/N 1 to 5 are taken. 

Table 13: Data points for clustered set C1 with |V| = 30 

  S/N C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 
  x y x y x y x y x y x y x y x y x y x y 

|V| 

1 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 
2 40 5 30 30 70 58 28 35 20 85 90 35 35 5 38 68 20 50 22 85 
3 75 55 42 66 28 55 55 80 28 55 32 30 15 80 25 30 65 85 25 55 
4 60 80 8 45 50 30 15 75 20 55 50 40 2 40 33 32 23 55 35 5 
5 50 30 38 5 48 30 48 40 40 5 28 35 68 60 42 66 25 30 26 32 
6 60 55 10 40 63 58 20 80 0 45 8 40 44 5 30 52 68 60 50 35 
7 87 30 50 35 35 30 50 30 75 55 75 55 53 35 47 35 42 15 30 50 
8 40 69 65 60 88 30 60 60 95 30 40 5 40 69 8 45 30 30 55 80 
9 25 50 33 32 60 55 38 70 35 32 25 30 15 75 65 82 20 85 40 69 

10 20 80 35 66 5 35 8 45 42 15 5 35 85 25 40 69 58 75 20 80 
11 15 80 42 10 65 55 40 69 48 30 42 66 30 32 25 52 35 66 63 58 
12 66 55 28 30 20 50 35 69 87 30 42 10 45 35 40 66 85 25 53 35 
13 42 10 87 30 23 55 30 30 42 66 10 40 87 30 88 30 70 58 42 15 
14 42 66 53 35 62 80 38 15 50 40 50 35 92 30 92 30 5 45 30 32 
15 28 55 25 55 87 30 65 60 45 70 45 70 55 80 35 32 22 75 48 40 
16 38 68 0 40 60 60 65 55 45 35 44 5 38 68 25 50 35 32 38 68 
17 10 35 30 52 40 5 35 32 35 5 20 85 66 55 35 66 48 30 20 85 
18 28 30 38 15 45 35 26 32 45 30 40 69 55 85 53 35 23 52 32 30 
19 65 55 32 30 45 70 45 65 38 5 60 85 20 50 5 45 35 69 20 55 
20 60 85 85 35 67 85 10 40 40 69 58 75 67 85 23 55 60 55 95 35 
21 38 15 23 52 92 30 72 55 88 35 10 35 0 45 60 80 8 45 85 35 
22 28 52 40 15 75 55 33 32 5 35 70 58 95 35 63 58 35 30 66 55 
23 55 85 20 80 30 30 28 55 44 5 45 65 48 40 25 35 62 80 25 50 
24 85 25 48 30 55 80 65 85 55 85 68 60 75 55 38 15 38 68 40 5 
25 90 35 25 30 28 35 60 55 65 82 47 40 28 35 62 80 50 30 40 66 
26 35 32 35 32 60 80 2 40 70 58 62 80 88 30 42 10 15 75 38 5 
27 30 35 60 80 2 40 45 35 55 80 20 80 50 40 22 75 18 75 35 69 
28 62 80 85 25 20 80 88 30 28 52 35 30 60 55 30 50 35 5 8 45 
29 25 55 23 55 40 69 68 60 8 45 48 30 23 52 53 30 63 58 60 85 
30 30 30 20 85 38 15 35 30 25 50 38 15 10 35 35 5 30 35 10 40 

|W| 

1 68 60 45 65 25 30 23 55 30 52 45 30 95 30 66 55 25 85 50 40 
2 65 85 38 68 20 85 5 45 38 68 30 30 72 55 40 15 38 5 48 30 
3 65 60 28 52 85 35 87 30 38 15 33 35 40 15 42 68 47 35 90 35 
4 30 32 47 35 22 85 75 55 95 35 30 35 28 52 15 80 25 35 45 65 
5 2 40 22 75 25 50 25 30 30 50 45 68 42 15 23 52 20 55 88 35 
6 88 30 25 50 10 40 22 85 32 30 22 85 65 60 45 68 72 55 28 35 
7 38 5 30 35 10 35 90 35 42 68 63 58 33 35 50 30 45 68 10 35 
8 92 30 95 30 38 70 23 52 66 55 23 52 25 52 68 60 30 52 45 30 
9 88 35 22 85 20 55 25 35 60 55 15 80 30 35 50 35 25 55 87 30 

10 65 82 58 75 25 35 22 75 23 55 2 40 33 32 47 40 42 10 65 60 
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Table 14: Data points for clustered set C1 with |V| = 20 

 
  S/N C101 C102 C103 C104 C105 C106 C107 C108 C109 C110 
  x y x y x y x y x y x y x y x y x y x y 

|V| 

1 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 40 50 
2 40 5 28 30 20 50 28 35 20 85 90 35 35 5 38 68 20 50 22 85 
3 75 55 87 30 23 55 55 80 28 55 32 30 15 80 25 30 65 85 25 55 
4 60 80 53 35 62 80 15 75 20 55 50 40 2 40 33 32 23 55 35 5 
5 50 30 25 55 87 30 48 40 40 5 28 35 68 60 42 66 25 30 26 32 
6 60 55 0 40 60 60 20 80 0 45 8 40 44 5 30 52 68 60 50 35 
7 87 30 30 52 40 5 50 30 75 55 75 55 53 35 47 35 42 15 30 50 
8 40 69 38 15 45 35 60 60 95 30 40 5 40 69 8 45 30 30 55 80 
9 25 50 32 30 45 70 38 70 35 32 25 30 15 75 65 82 20 85 40 69 

10 20 80 85 35 67 85 10 40 42 15 5 35 85 25 40 69 58 75 20 80 
11 15 80 23 52 92 30 72 55 48 30 42 66 30 32 25 52 35 66 63 58 
12 66 55 40 15 75 55 33 32 87 30 42 10 45 35 40 66 85 25 53 35 
13 42 10 20 80 30 30 28 55 42 66 10 40 87 30 88 30 70 58 42 15 
14 42 66 48 30 55 80 65 85 50 40 50 35 92 30 92 30 5 45 30 32 
15 28 55 25 30 28 35 60 55 45 70 45 70 55 80 35 32 22 75 48 40 
16 38 68 35 32 60 80 2 40 45 35 44 5 38 68 25 50 35 32 38 68 
17 10 35 60 80 2 40 45 35 35 5 20 85 66 55 35 66 48 30 20 85 
18 28 30 85 25 20 80 88 30 45 30 40 69 55 85 53 35 23 52 32 30 
19 65 55 23 55 40 69 68 60 38 5 60 85 20 50 5 45 35 69 20 55 
20 60 85 20 85 38 15 35 30 40 69 58 75 67 85 23 55 60 55 95 35 

|W| 

1 68 60 45 65 25 30 23 55 30 52 45 30 95 30 66 55 25 85 50 40 
2 65 85 38 68 20 85 5 45 38 68 30 30 72 55 40 15 38 5 48 30 
3 65 60 28 52 85 35 87 30 38 15 33 35 40 15 42 68 47 35 90 35 
4 30 32 47 35 22 85 75 55 95 35 30 35 28 52 15 80 25 35 45 65 
5 2 40 22 75 25 50 25 30 30 50 45 68 42 15 23 52 20 55 88 35 
6 88 30 25 50 10 40 22 85 32 30 22 85 65 60 45 68 72 55 28 35 
7 38 5 30 35 10 35 90 35 42 68 63 58 33 35 50 30 45 68 10 35 
8 92 30 95 30 38 70 23 52 66 55 23 52 25 52 68 60 30 52 45 30 
9 88 35 22 85 20 55 25 35 60 55 15 80 30 35 50 35 25 55 87 30 

10 65 82 58 75 25 35 22 75 23 55 2 40 33 32 47 40 42 10 65 60 
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